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Crossover between ordinary and normal transitions in the presence of a bulk field
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We investigate two-dimensional Ising films at the critical temperaiyrand nonzero bulk magnetic field
using the density-matrix renormalization-group method. The crossover beween ordipa®)(and normal
(h, =) transitions corresponding to finite values of the surface fieldsh,, is studied. The structure and the
solvation forcef ¢, as a function oh, crucially depend on the value bf. Scaling functions fof ¢, and the
longitudinal correlation length are given and discussed.
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[. INTRODUCTION of the finite widthL at the bulk critical poinT=T,, and the
bulk magnetic fielch=0 [4]. A peculiar behavior of the sol-

The Ising film of a finite widthL with fieldsh,,h, acting  vation force was found for weakly adsorbing walls: the scal-
on two surfaces, serves as an idealized representation ofiag function for |f,,,(h;)| exhibits a deep minimum near
fluid in a slitlike pore or between two large colloidal par- L:h;”’A associated with unusual order paramé@#®) pro-
ticles; the local surface fields model the substrate-fluid interfiles that increase from the wallg; and A, are the critical
actions, which give rise to adsorption phenomena. Studies ghdices[3].
these model systems provide theoretical input for under- Whereas the mechanism leading to the OP profiles of a
standing adsorption experiments in porous materials or finelghape so different from ones corresponding to fixed points
divided colloidal graphite and for interpreting surface forceh, =0 andh; =0, can be explained heuristically on the basis
apparatus or atomic force microscoflg measurements of of the behavior of correlations in the near-surface regfdn
the liquid mediated forcegsolvation forces between two it is not immediately obvious why at the bulk critical point
substrates separated by microscopic distances. Properties Qf | should be less attractive for wedk.
the solvation forcd s, are also relevant for the behavior of  |n order to better understand the structure of the solvation
colloids, in particular, for the form of the equation of state, force in the crossover region, we ask the question how does
sincefs,, contributes to effective interactions between largethe density of the confined fluid affe€,,, and other quan-
colloidal particles immersed in a fluid. The strength, rangetities for finite h;. The case of the vanishing studied in
and the structure of the solvation force depend on the theRef.[4] corresponds to a fluidt the critical density. Here we
modynamic state of a systent () but also on the adsorp- are interested in a situation more relevant for experiments,
tion properties of confining substrates, i.e., on the value,of i.e., when the density slightly deviates from its critical value.
andh, in the model system. In the Ising system this situation correspondshtp<1. Re-

In this paper we focus on the case of identical walls cent studies show that in the case of strongly adsorbing walls
=h,>0 and investigate the behavior of near-critical Ising(h;=2) the presence of even a very weak negative bulk
films for differenth;. Near the bulk criticality of a fluid, the field may lead to pronounced effects negy, such as a
dependence of various physical quantitieshgris especially  dramatic change of the adsorpti@mitical depletion [6,7] or
pronounced since the bulk correlation length becomes maa significant increase o¢fg,,,| [8]. The latter effect is related
roscopically large and the effect of walls extends into theto the phase behavior of the confined fluid beldyw Capil-
whole system. The leading critical behavior of a system inary condensation, i.e., the shift of the bulk first-order tran-
the presence of a surface, is classified into four differensition, which occurs belovl;, influences the behavior of
surface universality classes depending on whether the ordefy,,, at T=T., leading to the very attractive force away
ing at the surface is enhanced or de-enhanced compared fiom h=0 [9]. It then follows that more information about
the bulk[2,3]. The most relevant for fluids in contact with the structure of the solvation force in the crossover region
adsorbing walls is the normal transition when the externatan be infered from the study of its behavior as a function of
field h, breaks the symmetry at the surface, inducing orderh for different values oh; between 0 ande. Thanks to the
ing in the surface layer. The corresponding fixed point of therecently developed density-matrix renormalization-group
renormalization-group transformation is related hg= (DMRG) method, such systematic studiesTat T, are pos-
and to the surface enhancement of the interaatione [3].  sible ind=2. DMRG is an approximate technique based on
In the real confined fluids, the distance between the confininghe transfer-matrix approachlO]. The accuracy of this
substrates is often too small to observe the leading criticainethod atT=T,., h=0 and different surface fields; be-
behavior and the properties of a system at the finitei.e.,  tween 0 and 10, was tested in Rpf] by comparison with
in the crossover between the normal and the ordirtary the results obtained using the exact diagonalization of the
=0, c== fixed points, become relevant. The above crossiransfer matrix. The agreement of calculated quantities such
over was studied in the two-dimensiona= 2) Ising films  asfg,, or magnetization profiles was remarkable. The same
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method was then succesfully applied to study the effect oftates kept in a blockn=40 is sufficient to guarantee a very
the bulk field at fixed point§ =T, h;=0 (ordinary transi- high accuracy of results.

tion), andh,;=c (normal transition [8]. The present paper As in Ref.[8] we have used the finite-system version of
completes the study of criticdl= 2 Ising films with arbitrary the DMRG algorithm designed to perform accurate studies
bulk and surface fields. The paper is organized as followsfor finite-size system$10,13. In order to improve results,
Section Il defines the model, Sec. Ill briefly describes theone performs here more DMRG iterations keeping the sys-
technique and presents our results. Section IV summarizéem size fixed, whereas the number of spins included in ef-
our conclusions. fective blocks is changed. The procedure is time consuming,
but fortunately, in our case, only one cycle of iterations
(called a sweepis sufficient to get practically saturated re-
sults.

We consider thed=2 Ising film defined on the square  Calculations were performed for films of widthequal to
lattice LX M, M —o0. The lattice consists df rows at spac- 100, 150, and 200 &, . In the transfer-matrix approach the
ing a=1, so that the width of the film isa=L. At each site, leading eigenvalua _ of the transfer matrixr,
labeledi,j, ..., there is an Ising spin variable taking the
value o;=*1. We assume nearest-neighbor interactions of Tilv) =N[vy), )
strengthd and a Hamiltonian of the form

Il. THE MODEL

gives the free energy per spin of an Ising film as
(1) (L) 1
H=— J<i2j> aioj—HEi o-i—HlZi ai—HzZi oil, B(L)=—TInh. 3
D . :

In the DMRG method, the leading eigenvalue of #ffective
where the first sum runs over all nearest-neighbor pairs oiransfer matrix is calculated numerically. At a fixed surface
sites, while the last two sums run, respectively, over the firsfield hy, ranging from 107 to 10, we calculate various
and theLth row. H=hJ is the bulk magnetic fieldH,  Physical quantities for the bulk magnetic fielo| <1.
=h,;J and H,=h,J are surface fields corresponding to di-
rect, short-rangé“contact”) interactions between the walls A. Solvation force
and the spins in the film. We assume that=h,>0.

Scaling fields describing the deviation from the bulk criti-
cality arer=(T—T,.)/T, andh. The presence of a wall in-

troduces an additional field: the surface fibld The length is known exactly for the 2D Ising model =T, and zero
Cc

scales r?lated to the above scaling fieldslareA .7 In byl field [14], and its numerical value is approximately
=Aph™""%, and1,= A, h; "™, where the critical indices equal tof,=—2.1096511. For a nonzero bulk field we have
A=15/8,v=1, andA;=1/2 in thed=2 Ising model. At to evaluate it numerically. At this point it is worth making a
vanishing bulk magnetic field the bulk correlation length  digression about the accuracy of the results. For the bulk
reduces td ., whereas at the critical temperatuég,reduces system, when we reach the critical point along the isoterm
to I,. The remaining length scalg describes the distance T=T,, the correlation length grows a@s=.4,h~ "4 and di-
from the wall up to which the system responds linearly to averges at the critical point. In order to set the bulk free en-
weak surface fieldh; near bulk criticality. Although at the ergy per spin at a certain value of from the numerical
critical point the system no longer responds linearly to thecalculations, we find the values of the free energy for the
external field, the boundary layer remains paramagnetic fofinite systems(strips with larger and larger width& and
h,;—0. This is due to the missing neighbors, which cause thextrapolate them folL—o using the Bulirsch and Stoer
effective interaction per spin at the boundary layer weakemethod. An extrapolation guaranties a high accuracy of the
than in the bulk. The paramagnetic phase at the boundargulk free energy, if the ratio between the width of the largest
layer does not abruptly change into the critical system in thestrip L, and the correlation length is much greater than 1;
subsequent layers, but rather extends smoothly to the dishe smallerL,,,/¢ is the less accurate are the extrapolated
tance~1, from the wall[4]. values. Of course, generally the lowest accuracy of the bulk
free energy gives the worst accuracy of the solvation force
(see below As a compromise between the accuracy and
time of calculationsL ,,5,= 300 was chosen in our case. To
get better results for smatl, whereé&>L and the extrapola-
The DMRG method, originally introduced to study quan- tion is poor, we decided to use the approximate formula
tum spin chaing10], provides an efficient algorithm to con- fy(h)=f,(h=0)—0.9399/(16+1)|h|¥°*1, based on the
struct the effective transfer matrix also for larde=2 clas-  following dependencem,(h)~sgn(h)|h|¥? at T=T, (for
sical systemg11]. Applying this technique one deals with more details see Ref8]), where §=15 in thed=2 Ising
spin variables and effective blocks describing collections oimodel. On the basis of the analysis of the results, we have
spins[12]. The linear dimension of the total effective transfer chosen/h|=0.000 055 as the border value of the bulk field,
matrix is 4m?. In the present case we found that the value ofwhere which the approximate formula is used below,

In order to find the solvation force &t=T., we first
calculate the excess free energy per unit aféiL)
=(f(L)—fp)L, wheref, is the bulk free energy per spif,

IIl. DENSITY-MATRIX RENORMALIZATION-GROUP
RESULTS
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whereas above, the extrapolation of the DMRG results is
done. In spite of some deviations, both curves coincide sat-
isfactorily.

The solvation force for our system is defined as

fsoIv:_(é’fexlé’l—)h,T- (4)

In our calculations we approximate the derivative in E.
by a finite difference

F(0.y.x)

fso == (L[F¥(Lo+2) —f(Lo) . ©)

From the general theory of critical finite-size scaliid] it
follows that the solvation force for identical surface fields
should take the following scaling form

fsow /KsTe=L 9FL/ L/, ,LIY), (6)

. . . . . . 0 . ¥
where F is a universal scaling function. At fixed points :\;\_"H““"—?' =

=0, h=0, andh,;=0, or h;=0 the leading-order decay of
the solvation force fol.— is algebraic since the scaling
function reduces to F(0,0,0)=ApkgT. or F(0,09)

X
=A.kgT.. Ap and A,. are the universal, so-called, Casimir < \;?
amplitudes. For thel=2 Ising model,A.,,.= A,= — 7/48. ;: — x=0
In order to study the crossover regionat 0, we ignore g % +—x=5
w0l * *—x x=20000

nonuniversal metric factors and calculate’f ., /kgT. as a

function of X /
X

y=sgrth)L|n|"'* ™ b

. -15 ) ) ) )
at several fixed values of 250 -40 -30 -20 -1.0 00 1.0 20

x=L[hy|"1, 8 y

FIG. 1. Scaling functions of the solvation forE€0,y,x) calcu-
lated ind=2 lIsing films of several widthk =100, 150, and 200 at
T=T, and fixed values of surface fieltig=h, (fixedx). The inset

The obtained scaling functioR(0,y,x) is presented in Fig.
1, for x=0, 0.02, 0.25, 1, 5, and 20000. The functions

F(0y,0) andF(0y,20000), corresponding to ordinary and shows the nontrivial behavior of the scaling function in the

normal fixed points, respegtively,_were obtained in R8f. neighborhood ofy=0. Scaling functions and scaling variables
The shape of these functions differ very much from eachy s gimensionless.

other:F(0,y,0) has two shallow symmetric minima—one lo-
cated at somd,,;,>0 and the second at h,;,, whereas (capillary) critical point (h., ,T¢.), whereT. (h;) lies be-
F(0,y,20000) has a single deep minimum. At the minimum,low T, nevertheless it strongly influences the behavior of
the absolute value oF(0)y,0)/kgT. is approximately 3.8 the solvation force af, a discontinuous jump df,,,, from
times the Casimir amplitudgy, while the absolute value of almost zero to some large negative value, on crossing the
F(0,y,20000)kgT. is nearly 100 timesA4,.. These distinct coexistence linen.,(T), transforms aff=T, into a single
properties of the solvation force d=T, reflect different deep minimum located at sonhg,;,<<0 [9,19].
phase behavior beloW,. Although for bulkd=2 systems, Other curves in Fig. 1 show how the asymmetric behavior
there can be no true phase coexistence for fipjtéhere is  of the scaling functiorF(0,y,x) sets in wherh; increases
still a line of sharp(very weakly roundeyfirst-order transi-  from zero. For weakh,, there are still two minima. As the
tions in the Ising film ending in the pseudocritical point surface field becomes stronger, the minimum located at the
[16,17]. positive value oh becomes more shallow and shifts towards
In films with free boundaries, the Ising symmetry requiresh=0. At the same time the minimum located at the negative
two-phase coexistence to belat0. Therefore, the sign of value ofh becomes deeper and shifts away from 0. The
the applied bulk field is not relevant for the behavior of theshape of the scaling function changes in such a way that the
system and two symmetric minima of the scaling functionabsolute value ofF(0,y,x) at h=0 decreases with the
F(0y,0) occur when a dominant length in the systeniTat growth ofx until x~1, i.e., until the minimum ay>0 dis-
=T,, |, becomes comparable with appears. A further increase of leads to the increase of
In films with surface fieldh;=h,>0, the symmetry is F(0,0x). The maximum ofF(0,0x) occurs forx~1, i.e.,
broken and the entire phase boundary in tfiehj plane for L~1, [see Eq(8)].
[capillary condensation lindi.,(T)] is displaced into the For stronger surface fields, i.x>1, F(0y,x)~0 fory
half-planeh<0[9,16,19. Capillary condensation ends at the >0 at fixedx and decreases rapidly to a single deep mini-
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FIG. 3. ParameteD (dimensionlessdescribing nonuniformity
of the magnetization profiles plotted together with the solvation
forcefg,, (in units ofJ) as functions of the bulk magnetic fiefoh
units of J). Both quantities were calculated for the=2 Ising film
of the widthL =100 atT=T_ and the fixed value of surface fields
hy=h, such thax=Lh!'*1=5.

types of profiles(with two maxima as a function of the
magnetic field. Profiles are calculated fo+ 100 at fixedr
=0 andx=5. It is seen that for weak positivie as well as
for sufficiently negativeh, the profiles are nearly flat except
near the walls. They become distinctly nonuniform for
b from the neighborhood of the minimum of the solvation
-1.0 0 2'0 4'0 6'0 8'0 700 force. To make_ the r_elation between t.he mini_munfgfv(h)

2 and the nonuniformity of corresponding profiles more quan-

titative, we define the nonuniformity parameter as

FIG. 2. Magnetization profiles calculated in the- 2 Ising film

of the widthL=100 atT=T, and fixed values of surface fields D= 1 fL_Ildzd—m 9)

h,=h_ such thaix= Lhi’Al:S. Different curves correspond to dif- S L-21, I dz|’

ferent values of the bulk magnetic field: from the top profile to

the bottom one(a) h=0.0055, 0.0009, 0.0;-0.0003, —0.000 55, The discrete version db is given by

—0.000 88, and-0.0013;(b) h=—0.001 08,—0.0014, — 0.0036,

and —0.018. z is in units of the lattice constant, magnetizetion is L—=1y

dimensionlessh is in units of coupling constant D= =N E m(z)—m(z—1)|, (10
—21, 4

mum at the negative value gf For small negative values of h is th L h
y, this rapid decrease is linear mindicating residual con- W erem(z) is the average magnetizatiqm;) at the perpen-
densatior{9]. dicular distance=ia, i=1,... L, from the first wall. The

above definition neglects the direct effect of the surface field
o . ' on the profile in the linear-response layers near surfaces.
B. Magnetization profiles and the adsorption Thus,D describes the nonuniformity of the central, core part

As already mentioned in the Introduction, the shape of th@f the slit, which is not responding linearly to the weak sur-
magnetization profiles at=0, h=0 and weak surface fields face fieldh,. The parz_imeteD is zero for profiles that are flat
differs very much from the shape assumed at the fixed poirif? the center of the film and takes a large value for the ones
y=0. The OP profile, corresponding to the normal transi-that are highly nonuniform. We calculatéai for m(z) pre-
tion, decreases monotonically towards the center of the filmSénted in Fig. 2 and other profiles corresponding 6 at
whereas for wealh,, the maximum order is shifted away different values oh taking the amplltude4h1%0.909l in the
from the wall to the distance-1,. For surface fields such d=2 Ising model[20]. D as a function of the bulk field for
that 1<l,<L, magnetization profiles at=0,h=0 have x=5, is shown in Fig. 3 together withy,,(h). For h near
two symmetric maxima. They merge into one, broad maxithe minimum of the solvation force,,;,, the functionD (h)
mum located at the middle of the film fof~L. Forl,;>L exhibits a rapid increase and we find that the inflection point
the profiles are nearly flat with the magnetization muchof D(h) is located neah,;,.
lower near the walls than in the central part of a system. The solvation force is closely related to the adsorpiign

In Fig. 2 we show the evolution of the most nontrivial which for the Ising film, is defined as follows:
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FIG. 4. Adsorptionl’ as a function of the bulk magnetic field y
calculated for thel=2 Ising film of the widthL =100 atT=T, a}r;d FIG. 5. Scaling function&(0,y,x) of the inverse of the longi-
several fixed values of surface fieldg=h, such thax=Lh;"™*  tudinal spin-spin correlation length of finite systen, calculated
=5.T is dimensionlesdy is in units ofJ. for the same systems as in Fig. 1. Symbols corresponding to differ-

entx are the same as in these figures. Scaling function and scaling
L variables are dimensionless.
[=2 [M(2)—my], (1)

1 points, respectively, were obtained in Re]. K(0,y,0) is an
even(symmetrig function with the largest value of the cor-
relation length located at= 0 (critical point). From the plot
it is seen how the asymmetry of the scaling function builds in

wherem,, is the bulk magnetization at,h. Thermodynamics
implies that at a fixed value of the surface fi¢k9]

f gl i, whenh,; becomes nonzero. Asincreases, the minimum of
(% = (I) . (12 K(0y,x) (maximumé)) for fixed x, shifts to negative values
TL T,h of y and the value of the scaling function increases for all

values ofy including the minimum §; decreases This
. ) ; . . eans that in the presence of surface fields the longitudinal
of the bulk field at fixedT, L is associated with the extremum ¢, e|ation length becomes smaller than in the case of free
qf the adsorption as a function of the width o_f a filmat boundaries, i.e., adsorbing walls suppress fluctuations. The
flxed_Tfh. Our results agree reasonably well with the aboveminima ofK(0y,x) at fixedx lies close to the maxima of the
predictions. , nonuniformity parameteD(h), thus, they are associated
. In Fig. 4 we plot the adsorp_UoﬁthJerb as a_func- with highly inhomogeous profiles§ (h) for h around its
tion of h for different surface fields. Fox=0, I'(h) is an  55imm’is much larger than the corresponding bulk “mag-
odd(antlsymmetrm;functlon. Ash; increases the adsorption netic” correlation length, due to a presence of broad inter-
grows and its zero moves towartis-0. faces between thin layers of a liquidlike phase near the walls
and a gaslike phase in the middle of the film. AroyndO,
C. Longitudinal correlation length all curves are nearly constant, which reflects the finite-size
It is instructive to see how the crossover from nonadsorbeffects§j~L. L/§ becomes a linear function gffor suffi-
ing to strongly adsorbing walls influences the behavior of theciently large|y| with the same slope for all studied
longitudinal spin-spin correlation lengé of a finite system.
If we take the transfer matrix in the infinite dimension then IV. DISCUSSION

Therefore, the extremum of the solvation force as a functio

gu’l(f,h;L,hl)z —In[A;/Aq]. (13 The present paper completes the studgsf2 Ising films
at T=T, in the whole range of the bulk and surfaceh;
Here A, andA; are the largest and the second largest eigenexternal fields. With the help of the DMRG method, we have
values of the transfer matrix. Near bulk criticaligﬁ’,l obeys obtained very accurate results. The structure, as described by

scaling(ignoring metric factors magnetization profiles, the adsorption and the longitudinal
correlation length, as well as mechanical properties, i.e., the
L§H’1(r,h;L,hl)%K(Ll’”r,y,x) (14 solvation force, and all the corresponding scaling functions,

are given. The scaling functions we present are the only
with the appropriate universal scaling functiggL " 7,y,x). available universal quantities for the whole crossover region
In Fig. 5 we present the scaling functiéf{0,y,x) calcu- 0<h;<« on the critical isothernin# 0 for the Ising univer-
lated for the same values @fas the scaling function of the sality class ind=2.
solvation force shown in Fig. 1. Functiort§(0,y,0) and The behavior of the structure and the solvation force in
K(0,y,20000), corresponding to ordinary and normal fixedthe crossover region is very rich, which is of relevance for
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experiments. Competition between the surface and the bulkigh precision, not only in the temperature. Moreover, our
fields, favoring the positive or the negative magnetizationyesults indicate a qualitatively different behavior fogh
respectively, leads to highly nonuniform OP profiles associ=0 and h;h<0. For fluids confined between adsorbing
ated with the largest longitudinal correlation length and thewalls, it means a different behavior on the liquid and on the
most attractive solvation force. The peculiar behaviofgf, gas side of the coexistence line, even very closgtoOn a

at bulk criticality, i.e., a deep minimum of the scaling func- gas side the deviations from the behavior corresponding to
tion F(0,0x) nearL~14, results from its global properties. the bulk phase coexistenge= ., is much stronger than on
The surface field correspondingltp=L is a border value for the liquid side. Thus, in experimental studies focusing on
qualitatively different shapes dfs,,(h), with two minima  critical systemsh=0(u=pu.), it is essential to choosk
below and the one minimum above this value. —0, such thah;h>0.

For temperatures slightly above and below the critical Precise determination of the strength of the surface field
temperature, we expect similar behavior. In fact, magnetizah, for a particular fluid-adsorbent system, is difficult. Hence,
tion profiles with two maxima near the walls, characteristicthere are only two experimental studies of the critical adsorp-
for weak surface fields, were found in the Monte Carlo simu-tion as a function oh; reported in the literature. Both con-
lations of thed=2 Ising film of the widthL=24, h;=0.25,  cern binary liquid mixtures adsorbed afsimgle surface. In
andT/T.=0.95[21]. This paper was devoted to the study of the pioneering work24] the adsorbing solid surface has
the shift of phase boundary due to boundary fields in Isindoeen chemically modified during the experiment thus chang-
systems with identical walls and the authors did not connecing with time its preference from one component to another.
the somewhat surprising shapes of the obtained profiles witin the most recent work a homologous series of critical mix-
the (weak value of the surface field. tures were absorbed at the liquid vapor interfg. During

What is the relation between our results and experimentsthe experiment, one of the components has been varied by
So far there is no systematic experimental study of the critiincreasing the chain length so that its surface energy progres-
cal adsorption and the near-critical solvation force as a funcsively increases and the preference in the adsorption changes
tion of bulk and surface fields in confined systems. Experifrom the one component to the othér. was related to the
mental studies of the critical adsorption in fluids concernsurface energy difference between two components. Both
primarily the universal behavior in the limit of strong adsorp- ways of changing the strength of the surface field could be
tion hy— and have been performed in the semi-infiniteused for studying the confined systems.
geometry, such as, for example, binary liquid mixtures ad- Quantitatively, our results are relevant fie=2 systems,
sorbed at a single solid substrate or more usually at a fluiguch as monolayers adsorbed at a substrate, or fluids con-
interface[22]. The strong adsorption limit was also studied fined in slits very narrow in the third dimension. In this case
in a confined geometry. These experiments have been pelt-is related to the interactions with the substrated 13 we
formed for pure fluids and employed adsorbents with a largexpect qualitatively similar behavior, since the physical phe-
surface area, such as finely dividémblloidal) graphite or a nomena, such as the proximity of capillary condensation and
porous glasg23]. Colloidal particles or mesopores exert the competition between length scales associatedwith,
confining effects on the near-critical fluids and our resultsandL are not restricted to two dimensions. Finally, we note
might be of relevance for such systems. In fluid experimentshat chosing a fluid with desired adsorption properties, and/or
h~u—ue(T), whereu (T) is the critical chemical poten- changing a density of this fluid near bulk criticality, provide
tial, and this is determined by the density of a fluid in thea mechanism for tuning the effective interactions between
reservoir. Our findings imply that a slight change in the dendarge colloidal particles immersed in this fluid.
sity of the reservoir can lead to pronounced deviation from
the universal behavior, a rapid change in the adsorption, and
the increase of the strength of the solvation force, which may
lead to an agglomeration of the colloidal particles. Therefore This work was partially funded by KBN Grant Nos.
the measurements near bulk criticality of a fluid requires2P03B10616 and 3TO9A07316.
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